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ABSTRACT 

In r ada r  or  radio astronomy we observe a signal whose covariance 

function depends on some target  p a r a m e t e r s  of in te res t .  We consider h e r e  

the problem of es t imat ing the values of these p a r a m e t e r s  f r o m  our observ-  

ation of the signal. 

mum likelihood estimation. 

duration of the observation interval  becomes long, the mean square  e r r o r  

in  the maximum likelihood est imate  approaches the minimum given by the 

Crameg-Rao bound. 

difficult to  compute. 

which divides the observation in te rva l  up into subintervals  of shor t  length: 

on each subinterval the signal is processed  quadratically and the resul t ing 

calculation used to improve our es t imate .  This method has  many compu- 

tational advantages and, under ce r t a in  conditions, we can show that the 

e r r o r  in the resul t ing sequence of es t imates  approaches the Cramer -Rao  

b ound a 

One possible procedure  is t o  use the method of maxi -  

This method has  the advantage that,  a s  the 

However, the maximum likelihood es t imate  i s  usually 

We present  h e r e  a r ecu r s ive  est imat ion procedure 

/ 

We begin by giving brief considerat ion to the problem of determining 

the functional dependence of the covariance function of the received signal 

on the ta rge t  p a r a m e t e r s .  

appear in the Cramer -Rao  inequality. Last ly ,  we descr ibe  t h e  r ecu r s ive  

est imat ion method and s ta te  conditions under which i t  is applicable. 

W e  then present  express ions  for the t e r m s  that 
/ 
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I. INTRODUCTION 

In radio or  r a d a r  as t ronomy,  we observe a signal emitted or 

sca t te red  f rom an  astronomical  body o r  ta rge t  with the objective of 

gaining information concerning the nature  of the body. 

signal is emitted by the body, the sou rce  of the emiss ion  is a t  the atomic 

level;  

the signal i s  sca t te red  f r o m  a ve ry  la rge  number of specular  points. 

ei ther case ,  the resul tant  signal is the s u m  of a l a rge  number of incoher-  

ent sinusoidal contributions and hence will have z e r o  mean. Fu r the r ,  the 

cent ra l  l imit  theorem is applicable and the signal should be charac te r ized  

to a good approximation by a gaussian random process .  

behavior of such a p rocess  i s  completely descr ibed by i t s  covariance 

f unc t i on 

If the observed 

i f  the observed signal is a r a d a r  signal sca t te red  f rom the body, 

In 

The s ta t i s t ica l  

- - 
qs(tl,  5) = E{(St - st )(St - st )I (1- 1) 

1 1 2 2  
- s =  t 

and thus all 

at ion of the 

E{St) = 0 

information concerning the body that  can be gained by observ-  

signal is contained in  9 (t  , t ) . s 1 2  
We consider h e r e  the  problem of es t imat ing the numer ica l  value 

of those pa rame te r s  of the body which may be of in te res t ;  we a s sume  the 

es t imate  is  to  be based upon observation of W(t) -. S ( t )  f N(t);  the s ignal  

corrupted by white gaussian noise; we take the number of pa rame te r s  of 

i n t e re s t  to  be M, and denote generic  values of these p a r a m e t e r s  by an 

M-dimensional vec to r .  

The covariance function assoc ia ted  with the observed signal will 

depend on which values of the p a r a m e t e r s  actually per ta in  to the body, 

and we will denote this  functional dependence by writ ing 
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Given the problem of :rying to es t imate  some pa rame te r  (Y i n  
"c 

the absence of any a p r i o r i  s ta t is t ics ,  the usual  solution i s  to  use the 

maximum likelihood est imate  [ 11 . A s  shown by P r i c e  [ 21 , the maxi -  

mum likelihood es t imate  of 5 would be that value of cy which maximizes  

the quantity 
N 

in  which 

T o  pTo 
(9 =J J h ( t , s , s )  W(t) W(s) dtds 

0 0  

and h( t ,  s,$ i s  the solution of the integral  equation 

the X ( a )  a r e  the eigenvalues assoc ia ted  with 9 (t,  s ,  cy 
n S 

denotes the magnitude of the noise spec t ra l  density, and 

t, s ~1 [ 0, TI, N 

To the total  

observation t ime.  P r i c e  also shows [ 21 that, under the usual weak 

signal to noise ra t io  conditions prevailing in radio o r  r a d a r  as t ronomy,  

the quantity I (QJ is  given approximately by 
T O  

rTofo (p s ( t ,  s ,  N a )  W(t) W ( s )  dtds 
0 0 

In the radio astronomy situation, the process  observed might be 

a s ta t ionary process  and 

- 2 -  



Using the s y m m e t r y  of 

will  yield 

(cJ? a change in the 

T - T  rT n 

variables  of integration 

(1. 7) 

In the r a d a r  as t ronomy c a s e ,  if the t r ansmiss ion  is a sequence of 

sinusoidal t ransmiss ions ,  each of duration T and T is l a r g e  compared  

to  the delay s p r e a d  of the target ,  then IT (3) 
mate ly  as a s u m  of Q integrals of the f o r m  of Eq. (1. 7). 

Q 

S S 

can  be expres sed  approxi-  
6 

The use of the maximum likelihood est imat ion procedure  has the 

advantage that i t  is asymptotically efficient; that is, as T becomes l a r g e  

the covariance m a t r i x  of the e r r o r s  will approach the minimum given by 

the C r a m e r - R a o  bound [ l ]  I 

ciated with this  method can  be a lmos t  prohibitive. The us\;al situation is 

one in which a long total  observation t ime  ( la rge  T ) 

a rel iable  es t imate .  

is enormous (typical signal bandwidths may  be 160 c .  p. s o  o r  g rea t e r  and 

observation t i m e s  upwards of s e v e r a l  hours ) .  Even if  I ,  CY) can be 

expres sed  in the f o r m  of Eq. (1.7) and one-bit  coFrelation methods 

used  to calculate the t ime cor re la t ion  function of the cornputa.tiona1 

problems a s soc , a t ed  with evaluating I (g) and implementing a s e a r c h  

o r  gradient  seeking procedure fo r  rnaximlzing 

0 

/ 
However, the computational problems a s s o -  

is requi red  to obtain 0 
In this  case the data handling and processing problem 

4- 
[ 3 ~  41 

W, 

T o .  . l ( W i 2 ;  a r e  not t r iv ia l ,  

To  solve the computational problem, we propose a recilssive e s t i -  
. .  

mation method. That  i s ,  w e  w i l l  divide the total  obserka.tion ‘ t -  4 :  (3: 

duration T into a l a rge  number of sho r t  subintervals ,  each of duration 

T .  The duration T can be picked f o r  compatabili ty with computational 

faci l i t ies  or on s o m e  other  basis  of convenience? 

r e spec t  to  the r ec ip roca l  of the bandwidth of S ( t ) ,  

a r b i t r a r y  es t imate  CY During the recept ion of W(t) in the i i r s t  subinterval 

of length T, the signal W(t) is p rocessed  once by a quadratic p rocesso r  

and  a cor rec t ion  t e r m  based  on this  calculation is added to CY to yield CY 

0 

i ~ s  long a s  i t  is long with 

We start  with some 

-1” 
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This  process  continues: 

T we have the es t imate  

W(t) 

to sno 
that no m o r e  than T 

and the only quantity that needs to  be s to red  f r o m  one interval to the next 

is  CY the cu r ren t  es t imate .  

a t  the s t a r t  of the n-th subinterval of duration 

which we update by quadratically processing n 
during the n- th  reception subinterval and adding a cor rec t ion  t e r m  

The computational advantage of such a method l i e s  in the fact  

seconds of data is ever  handled by the computer 

Nn’ 
In Sec. 4, we will present  a specific such r ecu r s ive  method, and 

s ta te  conditions which a r e  sufficient to guarantee that CY r-cn 
the t r u e  value of the target  pa rame te r s ,  This method will be asymptot i -  

cal ly  efficient; that i s ,  when cy does converge,  the result ing e r r o r  eo- 

var iance ma t r ix  tends to the bound given by the Crameg-Rao inequality 

[ 11 a s  T becomes l a rge .  Before discussing this method, we br ief ly  

d iscuss  in Sec.  2 the relation between 9 ,  ( tg  S,CY) 

the ta rge t  in the radar -as t ronomy situation. 

c losed f o r m  express ions  f o r  the ma t r ix  appearing in the C r a m e r - R a o  

inequality and seve ra l  quantities relevant to the discussion of Sec.  4. 

Section 5 concludes with an example. 

converges to 

-n 

0 
and the proper t ies  of 

Section 3 presents  explicit 
/ 

11. RELATION OF THE SIGNAL CORRELATION FUNCTION TO THE 

PARAMETERS O F  A RADAR TARGET 

0 

In the radio astronomy c a s e  there  is nothing that we can  say  in 

genera l  relating the parameters  of in te res t  and the covariance function 

of the radiated signal;  

and the physical origin of the radiation must  be considered.  

in each c a s e  the relat ion between the p a r a m e t e r s  

In the c a s e  of a r igid radar  t a r g e t ,  a useful concept relating the 

sca t t e red  radiation and the target  pa rame te r s  is that of the scat ter ing 

function discussed by Green [ 5 1  

divided up on the bas i s  of range and relat ive velocity with r e spec t  to the 

r ada r  antenna. The scattering function is denoted by u ( T ,  o) snd  

C J ( T , O ) ~ T ~ ~  denotes the effective a r e a  of r a d a r  c r o s s  section of those 

portions of the ta rge t  located at  delays between T -dT and T and 

doppler shifts  between o-do and o. The average  power re turned  f r o m  

those portions of the ta rge t  lying in these delay and doppler zones is  thus 

proportional to 

Consider the sur face  of the ta rge t  

u ( T , o) dTdo. 



The dependence of the ta rge t  scat ter ing function upon the t a rge t  

pa rame te r s  i s  usually d i rec t ,  and enables one to find the functional 

relationship F(T, r , ~ ) .  F o r  example, Green [ 5! has  deril-yd an expres -  

sion for  the ta rge t  scat ter ing function of a rough rotating sphere which 

d i rec t ly  expres ses  i t s  dependence upon the rotational velocity and angu- 

lar scat ter ing function of the sphere.  

Inasmuch a s  our resul ts  a r e  based on the dependence of the co-  

var iance function on the target  p a r a m e t e r s ,  i t  would be useful to have a 

relat ion between +S(t12 t 2 )  and V ( T  ,o), 

Consider t ransmit t ing the nar row band signal 

a 

c 

(2.1) 

in which X(t)  i s  a complex valued lo-pass  signal. The signal, S (tI9 

re turned  f r o m  that position of the t a rge t  a t  delay T and doppler shift a, 

i s  then the r e a l  par t  of 

acir 

t; (t) = Kx( t  - T ) r ( t  - T ,  T , o ) T ~ ’ ~ ( T , w )  e x p [ j ( a h , B ( t - . r $ ]  
T , W  

(2. 29 

in which the constant K depends on the antenna gain and range of the 

ta rge t .  The random time-varying complex-valued reflectivity coef- 

f icient r descr ibes  the variations in the a r e a  and number of specular  

points a t  

ing is taking place off a gaseous atmosphere.  

T ,  o caused ei ther  by rotation or by local  motion if the sca t t e r -  

We a s s u m e  r is normalized such that 

= 1  

Although the var ia t ion in delay over  a region between T - dh and ‘T 

i s  negligible with r e spec t  to  the modulation, there  will s t i l l  be  fluc- 

tuations l a r g e  with respec t  to a c a r r i e r  cycle.  

that  

This  would imply f i rs t  

E { r ( t ,  w, T ) }  0 ( 2 . 3 )  
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A 

Secondly, one would expect that if a s teady sinusoidal signal w e r e  sca t -  

t e r e d  f r o m  the region, the covariance function of the sca t te red  signal 

should be independent of the p h a s e  of the t r ansmi t t ed  signal. 

shown, in a s t ra ightforward but laborious manner ,  that  this implies 

that  

It can  be  

E { r ( t l s ~ j a ) r ( t  2’ T , o ) }  0 (2 .4 )  

Last ly ,  these  same  considerations imply that r(t,  T ,  o) will be uncor-  

re la ted  at regions of different delay and doppler shifts; thus,  applying 
Eq. (2. 3 )  and (2. 4), we have 

Returning to Eq. (2. 2), we  have that the total  re turned  signal is 

given by S( t )  =: Re{&(t)}, in which 

the  integration being over  all values of delay and doppler shift assoc ia ted  

with the target .  Using Eq. (2. 7) to wr i t e  out the quantities 

and  

taking expected values ,  and using Eqs.  (2. 5 )  and (2. 6) yield 

-6- 



4- 

= (1/2) K'ReJdTdwk (tl- T ) x ( t 2 - T ) p  (tl-t2 2 7 , w )  

Last ly ,  if we  a s s u m e  that  p ( t  -t T ,  w) is independent of T and a, we 

have 
1 2' 

. \  K2 d. 

$ s  ( t l , t2 )  = - 2 Re p ( t  1 2  -t ) J d T X ( t l - T ) y ( t 2 - T )  

111. EXPRESSIONS RELATED TO THE LIKELIHOOD FUNCTIOP'; ZND THE 

CRAME~;-RAO BOUND 

In th is  section we present  an express ion  f o r  the matrix appearing 
/ 

in the C r a m e r - R a o  inequality [ ', 61 This  inequality is lower bound on 

the e r r o r  that  can  be achieved in es t imat ing a l i nea r  combination of the 

components of a based  on some observat ion re la ted  to  zo Let be 

any  unbiased e s t ima to r  of 3, 
N 

be  the "true" value of 3 and c- an 

a r b i t r a r y  vector.  Then the Crarneg-Rao inequality is 

M 

(3.1) 
E {[z A - €lj )I2\= c ' R ~ c  > c 'B- lc  

J - a , - - -  rv 

in  which p r ime  denotes t ranspose ,  RA is the matrix whose i j- th e le -  

men t  is 
CY 

and  B is the matrix whose ij-th e lement  is 
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JI 

1 denoting the log-likelihood function". of based on the observation 

made. 

and we now present  c losed fo rm express ions  for  these  pertinent quan- 

t i t ies .  

The quantities aP/acui and bij  a r e  thus of d i rec t  in te res t ,  

Consider observing the random process  W ( t )  = S( t )  t N ( t ) ?  the 

signal of in te res t  plus white gaussian noise,  on the t ime interval [0, T ] ~ 

Let  +n(t,ct) and X (9 be the normalized eigenfunctions and eigen- 

values of the integral  equation 
n 

If 2 w e r e  the value of the  parameter  vector  actually assoc ia ted  with the 

p rocess  S(t), then the process  W(t) would be descr ibed by [ 81 

n 

W ( t )  = 1. i. m. 2 Wk+k(t ,z)  
n j o o  k=l  

in which 

rT 

( 3 . 4 )  

The coefficients Wk a r e  all zero mean independent gaussian random 

var iab les  with var iance being the (two s ided)  spec t ra l  

densi ty  of the additive white noise. The likelihood ra t io  of CY based  

on the observa t ion  W(t), tc [0, T ]  , can  then be taken a s  the l imi t  

An($) t No, N 0 

h 

2.:: 

To be s t r i c t ly  c o r r e c t ,  the quantity 1 appearing in this expression 
should be the Radon-Nikodyn derivative. 
W is continuous our  definition of P a s  defined in Eq. (3 .  6) would be 
equal with probability one to the Radon-Nikodyn derivative [ 7 ] In 
actual  fact ,  the noise N i s  not white but m e r e l y  ve ry  broad band so 
this  condition would be met.  However, for  simplicity of the resul tant  
express ions ,  we will use an expression for  [Eq. ( 3 .  9)] that  r e su l t s  
f r o m  letting the bandwidth of N become infinite. 

If the cor re la t ion  function of 

1 

-8 -  
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in which p(W . . 
W1. * ,  W under the hypothesis that the p rocess  S( t )  is cha rac t e r -  

ized by the pa rame te r  value 2 and p(W,, * .  . , W ; O )  i s  the same  

density function under the hypothesis that  the process  

noise  alone. 

given by 

Wn;$ i s  the density function associated with 
1' 

n 

n 
W(t) is  the 

It is shown [9]  that the na tura l  log of this quantity i s  

03 00 

If h( t ,  s , ~ )  i s  the solution of the integral  equation 

h(t, s, a) W(t) W(s)  dtds 1 I '  " 
Iu 

/y 

03 

( 3 .  9 %  

To develop fu r the r  expressions,  we will need to interchange cer ta in  o p e r -  

ations such a s  integration and par t ia l  differentiation. These interchanges 

a r e  justif ied only if I# (t, s , ~ )  is suitably well  behaved; thus we now s ta te  

conditions that will be sufficient to justify these operations.  
S 

Condition 1: W(t) = S( t )  t N(t)  in which S and N a r e  independent 

z e r o  mean gaussian p rocesses ;  the noise 

density N. 

N ( t )  i s  white with spec t ra l  

- 9- 



Condition 2: Let  a superscr ipt  denote par t ia l  differentiation 

with respec t  to the corresponding component of 2. 

+,( t ,  s ,  a), h( t ,  - > $ I ,  ana  hi( i ,  s ,  c$ a r e  a s sumed  to be 

continuous in t and s on [0, T] x [0, T ]  and the functions + i (t,  s , g )  

and hiJ( t ,  s , d  assumed  to be integrable square over  [O.  T] x[O, T] 

The functions 

N 

for  i , j  = 1 , 2  , . . . ,  M. \ 

Let  us now take the partial  a /hi of both s ides  of Eq. (3. 9) 
and interchange differentiation and integration on the right hand side 

(the above conditions justify this interchange [ lo]  ) to obtain 

T T  

a i l a a .  = - /I hi ( t ,  s , d  W ( t )  W(s)  dtds 
1 2 N 1  0 ‘0 

(3.10) 

Star t ing with the integral  equation (3. 3 ) ,  i t  i s  possible to find a n  equf- 

valent c losed f o r m  expression for  the s u m  in Eq. (3.10) [lo]; 

i s  

the r e su l t  

-? T 
1 

2N ’ u 
a l ! a f f i  = - / / hi( t ,  s , d  [ W(t)W(s) - + w ( t 2  s, a)] dtds 

(3.11) 

in which + From this  expression and 

Eq. (3.2) one can obtain the b . .  appearing in the C r a m e r - R a o  bound. 

The resul t ing expression reduces a f te r  some manipulation [ lo]  to 

(t, s , ~ )  = +,( t ,  s ,  cy) t NG(t-s). 
N W 

/ 

‘J 

(3.12) 

These  quantit ies,  when used in inequality (3. l),  bound the p e r -  

formance of an unbiased estimate of 

of W ( t )  of duration T. It can be shown direct ly  that the corresponding 

based on a single observat ion 

-10- 



bound for  an es t imate  based on n s ta t is t ical ly  independent such observa-  

t ions i s  s imply the right hand side of Eq. (3.1) divided by n. 

Reflection upon Eq. (3.11) can  suggest an i terat ive method f o r  

Take the expected value of both s ides  of this equation, es t imat ing Eo 
noting that condition (2)  allows the expectation and integration to be 

interchanged. 

F o r  convenience we denote E { a  Q /  a a.} by m .  (9 and the M -dimensional 

vector  whose i-th component is m.($ by ~(9. Note that ~ ( 9  i s  equal 

to  2 fo r  a+ = We will r e s t r i c t  ourselves  to si tuations in which this  is  

the only value of CY 

procedure based on successive observat ions of duration T 

W(t) to find the value of Q that s e t s  m(a) = 0. 

1 1 

1 

satisfying this equation and use a recurs ive  sea rch  
N 

of the process  

- 7 -  - 
IV. A RECURSIVE ESTIMATION METHOD 

We now wish  to investigate the possibility of recurs ive ly  es t ima-  

ting j, the value of LZ, that satisfies 

observat ions of W(t). 

the result ing sequence of es t imates  is  asymptotically efficient; that i s9  

as  n, the number of observations,  becomes l a rge ,  the covariance ma t r ix  

of the e r r o r s ,  RA, should approach ( l /n)B,  the en t r i e s  of B being given 

by Eq. (3.12). 

m(a) = 0, by making successive 
y V N  

Fur ther  we wish to do this in such a manner that 

* 

CY 

To facil i tate the discussion le t  us denote by Y (3 the M-dimen- 

a l / a c t i  evaluated f r o m  the o b s e r -  
-n 

sional vector  whose i - th  component is  

vation of W ( t )  on the n-th t ime interval  of duration T. 

i s  calculated by the M quadratic operations of of Eq. (3011)j in which the 

integration is c a r r i e d  out over the n- th  observation interval  instead of 

[ 0, TI. 

intervals  of t ime a r e  statist ically independent. 

Note that Xn(& 

We shall  a s s u m e  that observations of W ( t )  made  on these (disjoint)  

Now consider  finding 5 

-11- 



the value of 5 f o r  which 

m(a), we might r ega rd  ~ ( 9  as  the gradient of a unimodal surface.  

w e  TTerc able to make successive observations of m(a) a t  different 

values  of CY, then we could employ a conventional gradient seeking o r  

hil l  climbing method to search  out 2. 
observe  $9, we can  observe Y (aJ, 

= N m(a) N. 

the zn and weight of the sequence of result ing cor rec t ions  by a "gain" 

that dec reases  a s  the observation number inc reases ,  the fluctuations 

in xn tend to be cancelled out and, under suitable conditions, the 

resul t ing sequence of es t imates  tends to converge to 6.  

i s  zero ;  under suitable conditions on 

If 
" 

ruc1 

N 

Although we a r e  not able to  

n = 1, 2 , .  . . , where E{Jn(z)} *n 
If we c a r r y  out the usual gradient seeking procedure using 

N 

To make this  explicit,  consider  the sequence of es t imates  

CY n = 1, 2 , .  . . , in which CY is chosen a r b i t r a r i l y  and the remainder  

of the es t imates  a r e  determined by the recurs ion  equation 
r n' -1 

(4.1) 

Such methods a r e  known a s  Stochastic Approximation methods; they 

have been studied fo r  some time and the convergence of CY to has  

been proven under a var ie ty  of conditions [ 11, 12, 13, 141 . 
with existing methods i s  t h a t  the covariance m a t r i x  of the e r r o r s  

depends ve ry  c r i t i ca l ly  upon the gain constant A. 

A can resu l t  in a mean square  e r r o r  

-n 
The difficulty 

R 

A poor choice of 

, 
n CY 

E {l13n - rJ 0 II',} 

/ 
which i s  much l a r g e r  than tha t  given by the C r a m e r - R a o  bound [ 141 . 
Unfortunately this  dependence upon A a lso  depends upon the unknown 

value of ft, hence a good a pr ior i  choice of A is not possible. 

To  c o r r e c t  this  situation, we consider  a. s tochast ic  equivalent 

of a Newton-Raphson procedure in which the cor rec t ion  t e r m s  a r e  

weighted by the inverse of the ma t r ix  of second par t ia l s  of the surface.  

-12- 



Spec ifically, l e t  

in which the i j- th en t ry  of the ma t r ix  G($ i s  given by 

It can be shown direct ly  f r o m  Eq. ( 3 . 1 3 )  using condition 2 that 

thus a s  2-2 the m a t r i x  G ( 3  approaches the m a t r i x  of second par t ia l s  

that  appear  in the Newton-Raphson method. Note that  g . . (0 )  i s  equal to 

the g 
1J - 

of the Cramer/-Rao bound. i j  
Under suitable conditions, it can be shown that  the sequence of 

es t imates  approaches 

( l / n )  G for  l a rge  n. 

t ee  this. 

and the covariance ma t r ix  of the e r r o r s  approaches 

We now state conditions which a r e  sufficient to guaran-  

Condition 3 :  Observations of W ( t )  made on the disjoint t ime in te r -  

va ls  of duration T a r e  s ta t is t ical ly  independent and identically distributed. 

Condition 4: 0 i s  known a pr ior i  to l i e  in the inter ior  of some 
N 

bounded s e t  A 

sequence of e s t ima tes  generated by Eq. 

se t .  

(in the M-dimensional space of pa rame te r  values)  and the 

( 3 .  2) is  constrained to l ie  in this 

Condition 5: G(5)  i s  invert ible  f o r  a l l  3 E A. 

Condition 6: The quantities 

and 

-13- 



M 

in which b. .(CY) = E (Be: - - :;} a r e  bounded f o r  all N CY E A. 
'J 

1 1 

Condition 7: There exist  a K and K O ,  0 < KO < K < 03 
0 0 - 

such that 

fo r  a l l  2 E A. 

Condition 3 can be assumed to hold in pract ice  as long a s  the 

bandwidth of S( t )  is  l a rge  compared to 1 /T .  The remainder  of Con- 

ditions 2- 6 a r e  of the na ture  of regular i ty  conditions and will  usually 

be satisfied in practice.  Condition 7 i s  r e s t r i c t ive  and will se r ious ly  

l imi t  the si tuations to which our method is applicable. Condition 7 i s  

requi red  to guarantee that the equation 2($) = %  have as i ts  only solu- 

tion CY = 0;  i. e . ,  that the "surface" whose maximum we a r e  locating 

be  unimodal. 
w r y  

We have shown the following resul t :  

Theorem:  Conditions 1-7 imply that  the sequence of e s t ima tes  CY 

generated by Eq. ( 3 .  2) is asymptotically efficient, i. e. 
-n 

.. 
This  s ta tement  i s  proved in [ lo]  ; the proof i s  long and involved and we 

do not give i t  here .  

In the closing section we present  an  example to  indicate the 

method's aFplicability to a problem of pract ical  i n t e re s t  and the scope 

of the l imitation imposed by Condition 7. 
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V. ANEXAMPLE 

We now consider  the case in which S(t)  

whose cor re la t ion  function is of the f o r m  

is a gauss ian  p rocess  

(5.1) 

in which A, y, and w a r e  unknown and to  be  est imated.  Reflection 

upon Eqs. (3.2) and  (3.4) reveals  that  in o r d e r  fo r  Eq. ( 3 .  2) to be 

c o r r e c t  dimensionally the a . ' s  m u s t  all have the s a m e  dimension. 

We will take them to be dimensionless and r ewr i t e  
1 

Eq. (5.1) as 

in which Ar and y a r e  a r b i t r a r y  re ference  values.  In o r d e r  that  

condition 3 be sati f ied we will need  to pick T such that 
r 

for  all values of a that  a r e  regarded  a p r io r i  as possible.  2 
For I p  s(t ,  s ,  a )  given by Eq. (5. 2) the function h( t ,  s ,  a )  can be 

However, the computations involved a r e  some- found direct ly  [ 15,161 ~ 

what laborious,  and we will  make a n  approximation. 

in radio astronomy,  the signal S would b e  g r o s s l y  weaker  than the noise;  

i. e. , 

In the usual c a s e  

In this situation, expansion of h(t ,  s , g )  in a Von Neumann s e r i e s  

indicates that  under the conditions of inequality (5. 3) 

-15- 



F o r  convenient normalization we shall  s e t  

= N  

e 

c 

( i t  can be shown 10 

chosen) so  that we a r e  interested in those si tuations in which 

that condition 7 is  independent of the scale  factor 

a1/cY2 < < 1 (5 .5)  

Fur the r ,  mos t  c a s e s  of interest  will  be those in which S( t )  is  nar row 

band; hence we a s s u m e  

Using the approximation of Eq. (5 .4)  and using inequalities (5. 5) and 

(5. 6) to simplify the resulting expressions,  we have calculated for  G ( a )  

8Na2 

2 G ( a )  
YrT((Y1) l o  

L 
0 2 

"2 

(5. 7 )  

(5 .8 )  
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. 

in which 

(5.11) 

F r o m  Eqs.  (5. 7) -(5.11) we can calculate  the quantity (a  - 0J'G(ctJ$ct). 
N N 

Making use of Eqs.  (5. 5) and  (5. 6) to  obtain a simplif 

to this  quantity, we  have 

e d  approximation 

8Aa2 t 5 ( h 2 )  2 

t ( A C V ~ ) ~ ]  -t ( A c z ~ ) ~  [ 8 + (16) i- 4--Aul) Aa2 
"1 

in which 

- "1 - - " 2  - O2 
9 ACY2 - 

- " 3  - e 3  
9 Aa3 - 

e 2  ( 3 3  
Aul - 

(5 .12)  

Condition 7 will be sat isf ied for  those values  of 

hand side of Eq. (3.12) is positive; thus,  as long as  is constrained 

to  l ie  in a s e t  f o r  which this expression is positive, our r ecu r s ive  esti- 

mat ion method may  be applied and will be asymptot ical ly  efficient. The 

table  below gives a Lrief l i s t  of inequality cons t ra in ts  whose satisfaction 

implies  that  -(E - 2)' G ( a )  h m(q) I U  is positive. The express ions  a r e  given 

in t e r m s  of the original A, y and w p a r a m e t e r s  of Eq. (5.1), Ao, yo, 

and  w denoting the t rue  values of A, y, and w and A, denoting 

for  which the r ight  

0 

0' w -  w 
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c 

0 < A - < 2A0 O <  A <  - 3A0 O <  A - < 6A0 

O C A <  - 2A0 O C A <  - 3A0 0 < A  - < 6A0 

0 . 5 6 ~  < y < co 0 .  73y0 5 y < 03 0 -  0 . 4 3 5 y  < y < 00 0 -  

0 < A  - < 2A0 

1 -  < 2Y0 

0 < A  - < 3A0 0 < A  - < 6A0 

0 < A < 2A0 - 0 < A - < 3A0 0 < A - < 6A0 

0 5 1 y  < y < m  0. 71y < y <03 0 -  0 -  o .37yo  5 y < 03 

From the above table, we can s e e  that the method cannot be applied 

with unqualified success  to this example; that is ,  i t  i s  not possible to apply 

this method when the re  i s  no a p r io r i  information regarding all th ree  pa ra -  

m e t e r s ,  A,  y, and o. However, f r o m  the above table we a l so  note that if 

-18 - 



any one of the three  pa rame te r s  i s  known to l ie  within a fa i r ly  nar row 

interval,  a wide latitude of values is  allowed for  the other  two. F o r -  

tunately, in many problems of in te res t  t he re  is a p r io r i  information 

concerning one of the three  pa rame te r s  which allows u s  to r e s t r i c t  our  

s e a r c h  in this manner .  

on the range of application of our r ecu r s ive  estimation method, t he re  

wil l  be problems of in te res t  to which it does apply. 

computational simplicity and asymptotic efficiency make it a t t rac t ive .  

Thus, although Condition 7 places definite l imi t s  

F o r  these,  i ts  

L 
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